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Abstract
We study the equilibrium properties of a system of particles in two dimensions,
interacting via pair and three-body potentials. This system undergoes a
structural transition from a square to a rhombic lattice and thus constitutes
a simple model for a generic tetragonal to orthorhombic transition. We aim
at an intermediate level of description lying in between that of coarse grained
elastic strain Hamiltonians and microscopic ab initio approaches. We obtain
macroscopic thermodynamicproperties and the phase diagram at zero and finite
temperatures as a function of the density and the relative strengths of the pair and
three-body energies using lattice sums, an approximate ‘cell model’ theory and
molecular dynamics simulations in the NV T ensemble. In addition, we study
the dynamics of nucleation following a quench from the square to the triangular
phase (Rao and Sengupta 2003 Phys. Rev. Lett. 91 045502). As in real solids, the
final microstructure depends sensitively on the depth of the quench—a shallow
quench results in an equilibrium ferrite while a deep quench gives rise to a
metastable twinned martensite. We find, in accordance with experiments, that
the twinned martensite is associated with a diffusionless transformation. We
propose that this model solid may be used as a test bed for studies of the statics
and dynamics of structural transitions.

1. Introduction

In spite of its fundamental and technological interest, there is as yet no general theoretical
framework for predicting the final microstructure of a solid following changes in temperature
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or stress across a structural transition [1]. This is in part because most experimental studies
have focused on technologically important solids which are far from ideal; thus it has been
difficult to isolate generic principles amidst the volume of empirical data [2]. Furthermore, the
spatial and temporal resolution of in situ experimental probes is limited; this makes it difficult
to follow microstructural changes at short scales of length and time. We believe progress can
only be made if we (a) identify simple ‘model’ systems which would serve as an arena for
detailed studies on the dynamics of structural transitions in solids and (b) develop ‘probes’ for
studying the dynamics and morphology changes at short scales; in other words for following
the motion of individual atoms as the transformation proceeds. High speed computational
modelling allows one to make useful contributions to both (a) and (b). This paper mainly
concerns point (a)—we provide a model system for a simple structural transition which could
serve as a test bed for studies of statics and dynamics of structural transitions. We demonstrate
its usefulness by evaluating the equilibrium phase diagram and computing thermodynamic
quantities as functions of temperature and potential parameters. In addition, we have carried
out an exhaustive analysis of the dynamics of solid state transformations in this model system
(point (b))—here we provide a short description for completeness; a detailed treatment appears
in [3]. A unique feature of our analysis is the simultaneous tracking of individual particles
at short scales and coarse grained elastic variables at longer scales, as the transformation
proceeds.

Our choice of the simple structural transformation, a square to a rhombic lattice in two
dimensions (2D), is motivated by two important considerations. The first is its relevance to
‘real’ solid state transformations. The square to rhombus transition may be regarded as a rather
accurate representation [4] of the three-dimensional tetragonal to orthorhombic (TO) transition
in an oriented single crystal where the strain along the third direction (c-axis) is negligible.
This transition is observed in many technologically important systems [5], such as the high
Tc compound YBa2Cu3O7. A novel realization of such a structural transformation occurs in
charged textures in ν = 1 quantum Hall systems [6].

The second motivation is more conceptual and warrants some explanation. Following
a quench across a structural transition, the atoms constituting the solid have to rearrange
themselves, since the parent phase is thermodynamically unstable. Instead of moving to the
new equilibrium configuration, the motion of the atoms is arrested in a final microstructure
which is very far from equilibrium. The microstructures often display features at length
scales ranging from 1000 Å to 100 µm, many orders larger than the lattice spacing. A more
appropriate description of the dynamics at these scales is in terms of continuum degrees of
freedom. It is however not clear a priori what the relevant continuum degrees of freedom
are, especially in situations where the solid undergoes large deformations from the parent. In
most theoretical studies of this problem, the only continuum degrees of freedom relevant at
these scales have been taken to be the components of the strain tensor [4, 7]. However, short
length scale phenomena such as atomic rearrangements [3, 8, 9] are not captured by these
strain-only theories and may in some cases affect the kinetics of the transformation. The only
unbiased way to determine the complete set of relevant degrees of freedom in the continuum
is to start from a more microscopic description and arrive at a continuum description using a
coarse graining method [10]. Such a coarse graining programme is more easily set up in the
crystallographically simpler square to rhombus transition.

How microscopically detailed should our microscopic model solid be? An ab initio or
semi-empirical description [11] which includes electronic degrees of freedom tailor-made for
a real system such as YBa2Cu3O7 suffers from three drawbacks—(i) it compromises the need
for generality, (ii) it is computationally expensive and (iii) it is difficult to extrapolate to the
continuum. We therefore model an effective Hamiltonian accurate over distances smaller than
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the bulk elastic correlation length but larger than the typical atomic spacing. This effective
Hamiltonian, coarse grained over the faster electronic degrees of freedom, will in general have
pair and many-body interactions. Note that in as much as the effective interactions are not the
microscopic, bare interactions, the ‘effective atoms’ are not the microscopic, bare atoms.

Our model system therefore consists of a set of N ‘particles’ confined in a 2D box of volume
V at a fixed temperature T . The particles interact with each other via specific two- and three-
body [12] interactions. While the two-body interaction stabilizes a rhombic lattice (triangular
for isotropic two-body potentials), the three-body interactions have been constructed to favour
a square lattice. Unlike in a real solid, the square to triangular transition in our model solid
may be driven by independently (i) increasing the density, (ii) decreasing the temperature or
(iii) decreasing the relative magnitude of the three-body potential. We discuss, in the main, the
equilibrium aspects of this transition. Towards the end, we present some results concerning
the dynamics of this transition; a detailed account of the dynamics of nucleation and growth is
published elsewhere [3]. In the next section we introduce our model, describing the pair and
three-body potentials. In section 3 we present the static lattice (zero-temperature) results for
the energy, stress and the elastic constants and exhibit the zero-temperature phase diagram.
In section 4 we discuss the effect of finite temperatures. We present results both from a ‘cell
model’ approximation [13, 14] and from molecular dynamics simulations [15] in the NV T
ensemble. In section 5 we discuss a simple generalization of the model to include a molecular
solid with a complex basis motif. We discuss briefly the dynamics of solid state nucleation
following a quench across the structural transition in section 6. Section 7 presents a conclusion
and future directions of this work.

2. The model potential

In this section we motivate the form of the effective Hamiltonian, coarse grained over the faster
electronic degrees of freedom. Instead of starting out ab initio, we shall assume that the solid
can be described by a general functional of the densities of particles. A simple form of the
density functional, proposed by Ramakrishnan and Yussouff (RY) [18], views the solid as an
extremely inhomogeneous liquid with a non-uniform, periodic, coarse grained density ρ(r).
The advantage of this approach is that it allows us to make accurate statements at any finite
temperature kBT = β−1. Following RY, we may write the Helmholtz free energy Fs per unit
volume V of the solid as
βFs

V
= 1

v

∫
v

d3 r [ρ(r) ln(ρ(r)/ρs)− ρs] − 1

2

∑
G

ρGρ−GC (2)(G)

− 1
3

∑
G1,G2

ρG1ρG2ρ−G1−G2 C (3)(G1,G2,−G1 − G2) + · · · . (1)

The leading term gives the ideal gas contribution (the integral is over the Wigner–Seitz unit
cell of volume v), while the subsequent terms arise from the interactions between density
waves ρG with wavevector G belonging to the set {G} of reciprocal lattice vectors (RLV) of
the crystalline solid. Note that we have defined the Fourier transform as

ρG = 1

v

∫
v

d3r eiG·rρ(r). (2)

The interaction terms involve the Fourier transform of the nth-order direct correlation functions
C (n)(G1,G2, . . . ,Gn−1). These functions may either be evaluated from a liquid state
theory [19] or deduced from scattering experiments (for instance, C (2)(q) = 1 − ρq=0/S(q),
where S(q) is the structure factor of the liquid at wavenumber q); however, evaluation



7736 M Rao and S Sengupta

Figure 1. A plot of the second-order
direct correlation function C (2)(q) versus
wavenumber q for a supercooled hard disc
liquid in two dimensions. The lines mark the
lengths of the reciprocal lattice vectors for
the triangular (top) and the square (bottom)
lattices scaled so that the smallest RLV
corresponds to the first peak in C (2)(q).

(or measurement) of direct correlation functions beyond the second order is extremely
difficult [20]. Approximate ways of incorporating the effects of these higher order correlations
have been used with varying degrees of success [21], though often a simple weak coupling
(mean-field) approximation, C (n) = V (n)/kBT , where V (n) is the n-body potential, works
remarkably well [22].

While the ideal gas term always favours a uniform liquid, the sign of the interaction term
decides whether the interactions stabilize (destabilize) density waves with wavevectors G �= 0.
As an example, let us consider first the effect of only the second-order terms in equation (1).
The coefficients, C (2)(|G|), measure the stability of a density wave with wavenumber |G|. In
figure 1 we have plotted C (2)(q) against q for a slightly supercooled hard disc liquid [23] in two
dimensions. This function is oscillatory and has a primary peak at roughly the wavenumber
corresponding to the magnitude of the smallest RLV of the thermodynamically stable solid.
Choosing the lattice parameter such that the smallest RLV coincides with the first peak of
C (2)(q), we have plotted the positions of the RLVs for the triangular (top) and square (bottom)
lattices in figure 1. Close-packed lattices have RLVs which are, on average, more widely
separated than those of an open lattice. As a consequence, open lattices often have RLVs
lying in the region of the first minimum of C (2)(q) which is negative, thereby contributing to
a destabilization of the lattice. From figure 1 we observe that this is indeed the case for the
square lattice in two dimensions [24]. Density waves corresponding to the second RLV of the
square lattice with Miller index {11} are not favoured, making the square lattice unstable in
two dimensions.

Note that the discussion above is the finite T generalization of the zero-temperature result:
that for isotropic, purely repulsive pair potentials in two dimensions, one can only stabilize
the close-packed triangular lattice [16]. For instance, a static calculation [17] of the T = 0
elastic moduli of the square lattice reveals a shear instability which spontaneously distorts the
lattice until it regains a close-packed structure.

In order to stabilize the square lattice one needs to go beyond the second-order contribution
and consider the effect of three-body correlations. As is clear from equation (1), a positive
(and large enough!) contribution from C (3)(G1,G2,−G1 − G2)ρ(G1)ρ(G2)ρ(−G1 − G2),
where any one (or two) of the wavevectors equals {11}, can compensate for the destabilizing
effect of the second-order correlator [24]. There are many choices for the wavevectors G, but
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Figure 2. Definition of angles and distances used in the three-
body potential.

the simplest combination is G1 = G2 = {10} (so that {10} + {01} = {11}). A straightforward
way to ensure that this combination of density waves is stabilized is to stabilize the real space
triangle involving the direct lattice vectors (10), (01) and (11) (and those related to them by
symmetry). Within a simple minded mean-field approximation this may be accomplished, as
shown below, by choosing an appropriate three-body potential which favours 0◦, 45◦ and 90◦
bonds. Higher order interactions involving four or more particles, though present in principle,
are not necessary for our purpose.

Our model system, constructed from this level of coarse graining, therefore consists of
‘point particles’ interacting with effective pair and three-body potentials. The interaction
energy E of the system is given by

E = 1
2

∑
i �= j

�2(ri j) + 1
6

∑
i �= j �=k

�3(ri j , r jk, rki ). (3)

For the pair potential we take

�2(|ri j |) = V2

(
σ

|ri j |
)12

, (4)

which is purely repulsive and therefore the system has to be confined with a uniform hydrostatic
pressure (see below). A purely repulsive system simplifies our analysis since there is one fewer
length scale and one fewer non-solid phase. Without the three-body potential, our system is
characterized by only one parameter instead of two (temperature and density). On including the
three-body potential, we lose this simplification, but the variation of thermodynamic properties
with density is still weak. Without loss of generality we can take V2 and σ to be our units for
energy and distance respectively.

The three-body potential is

�3(ri j , r jk, rki ) = V3

[
fi j sin2(4�i) fik + fi j sin2(4� j) f jk + f jk sin2(4�k) fki

]
(5)

where the function

fi j ≡ f (ri j ) =
{
(ri j − r0)

2 ri j < r0,

0 otherwise,
(6)

and we have used the notation ri j ≡ |ri j |. The angles are as defined in figure 2. The function
fi j provides a cut-off for the three-body potential; as long as fi j is short ranged (we have taken
r0 = 1.8σ ), the actual form of this function does not affect the qualitative results.

Note the close resemblance to the Weber–Stillinger potential [12]; our model however
has stronger square correlations built in, making the resulting structural transition (see below)
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Figure 3. The zero-temperature phase
diagram in the V3–ρ plane. The regions
where the square and the triangular phases
are stable are labelled.

strongly first order. Moreover, while Weber and Stillinger concentrate on the equilibrium
solid to liquid transition, we use this model to study the statics and dynamics of solid–solid
transformations in great detail.

It may appear that a three-body potential requires a large investment in terms of computer
times. This apprehension is fortunately unfounded. The form of this potential ensures that
three-body energies can be calculated [12] extremely efficiently, requiring a computational
effort not exceeding that for the pair part. This is discussed in the appendix.

3. Zero temperature: equilibrium

At zero temperature, the equilibrium configuration is a solid which minimizes the potential E .
Since we work in the constant NV T (and shape) ensemble, the density ρ = N/V is a constant.
Assuming that the only minima of E correspond to the triangular or square phases, we have
numerically deduced the T = 0 phase diagram in the ρ–V3 plane (figure 3). Later in this
section we show, within a restricted variational calculation, that these are the only minimizers
of E . As we see from figure 3, the triangular lattice is the lowest energy phase at high densities
and small values of V3, i.e., wherever the pair interaction dominates over the three-body part.
Across the boundary there is a strong first-order transition with a discontinuous change in the
slope (∂E/∂ρ)V3

.
To deduce the nature of the order parameter distinguishing the square from the triangular

phase, we look at how a rhombic lattice may be obtained from a square. Such an analysis
makes contact with continuum elasticity in a natural way.

At zero temperature, a continuous family of perfect rhombic lattices (labelled by
position vectors RT) can be obtained from the perfect square lattice (labelled by R0) by the
transformation RT = (I + T)R0 where the transformation matrix T is

T =
(
ε1/2 + ε2/2 ε3

ε3 ε1/2 − ε2/2

)
. (7)

The parameters εα (α = 1, 2, 3) are related to the components of a strain tensor by the
following construction. We choose to measure all distortions and energies with respect to the
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Figure 4. Two equivalent ways of obtaining a triangular lattice (filled circles) from a square, (i)
and (ii). One can either (i) shear the original lattice by an angle θ or (ii) rotate the original lattice
by 45◦ and then stretch it along one of the axes and compress it along the other so that b/a > 1.
For a square lattice, θ = 0, b/a = 1 and θ = 15◦, b/a = √

3 for the ideal triangular lattice. In
terms of the shear strain ε3 the corresponding numbers are 0 and 0.278 12.

undistorted square phase—our reference state. The microscopic displacements uR0 = RT−R0

are therefore defined at every R0 on the reference lattice, i.e., we use Lagrangian [16, 25]
coordinates. The full nonlinear Lagrangian strain tensor [25] εi j is

εi j = 1

2

(
∂ui

∂r j
+
∂u j

∂ri
+
∂uk

∂ri

∂uk

∂r j

)
, (8)

where the indices i, j go over x and y. The parameters εα in equation (7) represent the
combinations εxx + εyy, εxx − εyy and εxy respectively, which reduce to the usual volumetric,
deviatoric and shear strains once nonlinearities are neglected. Note that one may start
with a prescribed square and end with a final triangular lattice in more than one way—
the transformation parameters are not unique. For instance, for a given orientation of the
parent square lattice shown in figure 4 (i) one obtains a rhombic lattice using ε2 = 0 and
tan θ = ε3/(1 + ε1). Equivalently (figure 4 (ii)) the square lattice (first rotated by 45◦) can be
transformed to a centred rectangular lattice with ε3 = 0 and b/a = (1+ε2+ε1/2)/(1−ε2+ε1/2).
The two transformations are completely equivalent.

One of the offshoots of this non-uniqueness is that any rhombus obtained as a uniform
deformation of a perfect square can be represented by two independent parameters ε1 and
ε3. In addition, since the density ρ is a constant in our NV T ensemble, ε1 is related to ε3;

ε1 =
√

1 + ε2
3 − 1 ≈ ε2

3/2. Thus all rhombic lattices considered by us can be labelled by a
single parameter ε3 = ε (which by definition is 0 for the perfect square lattice). This makes
the shear strain ε a good order parameter which distinguishes the square from the triangular
lattices.

We may now calculate the energy of T = 0 configurations as a function of the order
parameter ε. A calculation of the energy E and its derivatives (elastic moduli) for a given
lattice involves computation of lattice sums. We start with a finite square lattice containing
10 × 10 sites and allow the transformation T to produce a continuous sequence of rhombic
lattices labelled by ε. We have checked for convergence of the lattice sums by increasing the
size of the lattice and observing the consequent change in the numerical values. In figure 5 we
have plotted the energy per particle E/N as a function of the parameter ε for various values of
V3 (keeping ρ fixed). Note that for large values of V3 there is only one minimum at ε = 0, so
the square lattice is the only stable phase. For smaller values of V3 two additional degenerate
minima appear at ε = ±ε0 = ±0.278 12 which correspond to the triangular lattice. The
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Figure 5. Energy difference per particle (�E/N ) between the square and rhombic lattices as a
function of the strain order parameter ε (see the text). Of the three minima shown, the one at ε = 0
corresponds to the square phase and the two degenerate minima at ε = ±ε0 corresponds to two
different orientations of the triangular phase. The curves are for V3 = 2.0 (top), 1.5 and 1.0. Note
the first-order transition from the square to the triangular phase as V3 is reduced.

transition is first order with the order parameter jumping discontinuously, |�ε| = ε0. Note
that in this model the change in the shear strain across the transition is fixed; we shall return to
this point in section 5 where we propose a variant of this model in which the jump in the shear
strain across the structural transition can be made arbitrarily small. As expected, the square
and triangular lattices are the only minimizers of E within this parametrization scheme.

To make contact with elasticity theory we may compute stresses and elastic moduli,
obtained by evaluating appropriate derivatives of the energy keeping T, N, V constant, namely
∂E/∂εα = σα (figure 6) and ∂2 E/∂εα∂εβ = Cαβ (figure 7). Note that our system is always
under a hydrostatic pressure P = σ1; the constant density constraint implies that for ε �= 0
there is an applied shear stress σ3 = P(ε)ε (figure 6). This implies that the slope of the shear
stress versus ε3 curve is not the shear modulus C33 (defined for zero external stress) but C33 + P
(figure 7).

At this stage, we find it useful to point out that the results of figures 5–7 can be rationalized
using a systematic power series expansion of the energy in terms of εα. Although such
expansions are quite common in the literature [4, 7], our results show that fourth-order terms in
εα , especially cross-couplings of the form ε2

1ε
2
3 and ε2

2ε
2
3 , together with coupling to the external

hydrostatic pressure P need to be included in order to reproduce the T = 0 results accurately.
The coefficients of all these terms are however not independent. For instance, relationships
such as

∂2 F

∂ε2
2

∣∣∣∣
ε0

= ∂2 F

∂ε2
3

∣∣∣∣
ε0

(9)

dictated by the geometry of the triangular phase have to be satisfied for all temperatures and
densities.

In this section we have been able to show that our model potential indeed produces the
square and the triangular lattices as minima of the energy. The potential parameters may be
tuned, if necessary, to a real system by comparing the elastic properties of this model system to
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Figure 6. The pressure P = σ1 and the
‘effective’ shear stress ∂E/∂ε = σ3 + Pε
as a function of ε for ρ = 1.1 and V3 = 1.5.

Figure 7. The second-order elastic moduli
C11 (bulk), C22 and C33 + P (shear) as a
function of ε. Note that for the triangular
lattice, C22 = C33 + P as required by
symmetry. The density ρ = 1.1 and V3 =
1.5.

experimentally measured quantities. By varying the density or the strength of the three-body
potential one obtains a zero-temperature first-order structural transition between a square and
triangular lattice. What happens to the structural transition at non-zero temperatures? We
study this question in the next section.

4. Non-zero temperature: equilibrium

In this section we analyse the phase diagram at T �= 0 as a function of V3 or ρ. We do this
by two methods—an ‘exact’ molecular dynamics (MD) simulation [15] in the constant NV T
ensemble, using the two- and three-body potentials defined earlier, and an approximate ‘cell
model’ [13] based on the deformation parameter ε. The latter leads naturally to an approximate
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continuum elasticity description at T �= 0. We take up the cell model analysis first and compare
its results with the exact MD simulation in the next subsection.

4.1. Cell model approximation: free energies and phase stability

Imagine being in a region of the zero-temperature parameter space V3–ρ, where the square
solid is the stable minimum of the energy. As the temperature is gradually increased, the
contribution of the phonon entropy to the (Helmholtz) free energy destabilizes the square
lattice. In order to quantify this effect one needs to go beyond the static lattice and consider
phonon fluctuations. Although a direct calculation of the contribution of phonons to the lattice
energy is straightforward [17], we choose to use the much simpler, though not necessarily less
accurate ‘cell model’ approximation.

Before discussing the cell model approximation, let us mark its regime of validity. First, the
cell model approximation neglects contributions from topological defects such as dislocation–
antidislocation pairs and thus breaks down near the melting point [10]. In two dimensions,
there is a further complication, since fluctuations of the displacement field u due to phonons
diverge logarithmically [16] with system size. This divergence is however weak and may be
ignored for the system sizes under consideration.

Recall that at T = 0, the configurations of the perfect rhombi were parametrized by a
single deformation variable ε. Is this true at T �= 0, when the lattices are not perfect due
to phonon vibrations? At low temperatures, we may assume that fluctuations of the rhombic
cells are slight—one may therefore be allowed a mean-field decoupling wherein products of
the components of strain are replaced by products of the corresponding averages. Arguing
as before, the rhombic cells can now be parametrized by 〈ε1〉 and 〈ε3〉, which in addition are
related to each other by the constancy of ρ. Within the spirit of the mean-field approach, we
ignore spatial fluctuations of the order parameter, an act justified when the temperatures are
low. Thus the energy E may be written as a functional of a spatially independent 〈ε〉.

Within the cell model approximation, the partition function of a lattice of N particles at
temperature T is given by [13]

Z(〈ε〉, T, N) =
[
�−3

∫
vε

dr exp(−δφε(r)/kBT )

]N

× exp(−E(〈ε〉)/kBT ) (10)

where� is the thermal wavelength and δφ is the change in potential energy of a single particle
as it moves around within a unit cell of size vε in a potential well arising from its interaction
with all its neighbours. A further harmonic approximation for δφ leads to the familiar Einstein
approximation. At the other extreme, for the hard disc potential, δφ = 0 except where overlaps
occur and the cell model approximation becomes identical to the free volume [14] theory. The
Helmholtz free energy for any rhombic lattice labelled by 〈ε〉 may now be obtained by using
F = −kBT log Z .

Evaluation of the Helmholtz free energy (figure 8) allows us to calculate the V3–T phase
diagram at any density ρ, as also the limits of metastability of the square lattice.

4.2. Molecular dynamics simulations

To obtain accurate results for the phase stability at non-zero temperatures, we have performed
a molecular dynamics simulation (Newton’s laws!) on our model system. We simulate
N = 2499 particles (50 × 50 unit cells with a vacancy to improve the kinetics) in the NV T
ensemble using a standard Nosé–Hoover thermostat [15]. The equations of motion for the
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Figure 8. The per particle Helmholtz
free energy difference (�F/N ) between the
square (〈ε〉 = 0) and rhombic lattices as
a function of 〈ε〉 for various temperatures
T = 0.1 (top), 0.5 and 1 (bottom). Note
the first-order phase transition from square to
triangular with increasing temperature.

particles coupled to the thermostat are given by [15]

dxi

dt
= pi

m
dpi

dt
= Fi − ξpi ,

dξ

dt
= 2N − 3

Q
(Tkin − T ),

(11)

where xi and pi are the positions and momenta of the i th particle respectively and the mass
m has been taken to be unity. Fi is the total force acting on the i th particle due to all other
particles and is derivable from the two- and three-body model potentials. The coupling to
the heat bath is parametrized by the variable ξ which acts as a force maintaining the kinetic
temperature Tkin = (1/N)

∑
i p2

i /2m at the temperature T of the bath (we have chosen a value
of Q = 0.1 to ensure convergence).

Note that we use a single (mobile) vacancy in the 50 × 50 lattice, as a device for attaining
rapid equilibration. Further, note that the particles move according to Newton’s laws, while
the vacancy mobility is an ineluctable consequence of this particle motion.

Starting from an ideal square lattice, we have equilibrated systems at various values of V3

and temperature at a fixed density for a time equal to 50–100×τ (where τ = σ/
√

V2, assuming
a unit particle mass—this corresponds to a real time of 1 ps) or until thermodynamic quantities
such as the pressure and energy have stabilized. To ensure that the temperature remains fixed
to within 1 part in 105, we have integrated the equations of motion using a leapfrog algorithm
with a time step of 10−3τ . The final structure is then examined and the information is used to
obtain the phase diagrams shown in figure 9. We display the phase diagram for two densities
ρ = 1.05 and 1.1. We have also plotted, together with the molecular dynamics results, the
results from the cell model approximation. We observe that for low temperatures, the cell
model approximation faithfully reproduces the actual phase boundary while showing marked
deviations at higher temperatures. The cell model approximation is also used to plot the limit
of stability of the square phase in the triangular region.

Both the molecular dynamics simulations and the cell model calculations predict that the
square to triangular transition remains first order over a wide region of parameter space even
at non-zero temperatures. For larger density, the transition point shifts to higher values of V3.



7744 M Rao and S Sengupta

(a) (b)

Figure 9. The phase diagram in the T –V3 plane for ρ = 1.05 (a) and 1.1 (b). For large V3 the
square phase is stable while the triangular phase is stable for smaller values of V3. The points
are results from our molecular dynamics simulations in the N V T ensemble with 2499 particles.
Starting from an initial ideal square lattice the system was equilibrated for up to 60 000 steps and
the final structure noted (� for square and � for triangular) for various values of T and V3. The
solid line is the phase boundary resulting from the cell model approximation (see the text) and the
dashed line is the metastability limit for the square phase from the same theory.

This is expected since a high density favours the triangular lattice. Also, the square phase
becomes unstable for lower values of V3 as the density is increased. The jump in the order
parameter remains fixed at |�ε| = ε0 along the whole transition line. This aspect of our model
is specifically addressed in the next section, where we show that inclusion of an anisotropic
pair interaction allows one to tune the order parameter jump all the way to zero.

We end this section with the following observations. We have seen that the exact MD
and approximate cell model give qualitatively similar results. More sophisticated phonon
fluctuation calculations may even produce quantitative agreement. Figure 8 suggests that
the Helmholtz free energy may be expanded in powers of 〈ε〉, just as was noted at T = 0.
Although we do not explicitly demonstrate it here, we may recover elasticity theory (including
corrections arising from thermal fluctuations) by constructively coarse graining as in [10].
Finally we must comment on the effect of finite size on the results of our simulations. In the
phase transition, being strongly first order, we do not see any change in the phase boundaries
when the number of particles is varied from 50 × 50 to up to 110 × 100. The non-equilibrium,
intermediate, microstructures do however depend on the size of the system. For example, in
order to observe the twinned state as discussed in section 6, one needs a sufficiently large
system so that the twin has enough space to grow before it impinges on itself due to periodic
boundary conditions.

5. Generalization to molecular solids

The model 2D solid discussed in the preceding sections has the virtue that it is simple enough to
begin a detailed theoretical study on, as regards both the equilibrium and dynamical features of
the TO transition across a range of scales of length and time. However, if we were to compare
the results of such a study with experiments on real systems, we would immediately face a
problem. Most solids undergoing a TO transition [4], for instance YBa2Cu3O7, have a complex
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basis, consisting of many atoms per unit cell. These systems generically have much smaller
jumps in the shear strain at the TO transition compared to the jump computed in the previous sec-
tion. To appreciate the quantitative discrepancy, recall the discussion following equation (8),
where we showed that any perfect rhombus obtained as a deformation of a square may be
parametrized by either ε or b/a. Defining an orthorhombic distortion as D ≡ (b − a)/(b + a),
we find that D = (

√
3 − 1)/(

√
3 + 1) ≈ 0.27 for our model square to triangle structural

transition—significantly larger than D = 0.0085 for the TO transition in YBa2Cu3O7.
Apart from this, there might be a more serious qualitative mismatch between our model

solid and real systems undergoing a TO transition. Changes in temperature or pressure
(hydrostatic or chemical) may lead to a local structural rearrangement (optical modes) which
would couple to the strain tensor. The jump in the shear strain across the structural transition
may therefore, unlike in our model solid, vary along the phase boundary, even going to zero
(phonon softening) at a critical point [26].

We shall see that we may address both of these issues within an anisotropic variant of
our model solid. Our attempt will be to incorporate the complex basis, with many atoms per
unit cell, into an effective Hamiltonian between ‘point particles’. In the spirit of an effective
Hamiltonian, we will coarse grain the density over a scale of length and time corresponding
to the ‘size’ ξ and relaxation time τ of the basis. Thus we may define a coarse grained density
as ρ(r) = p−1 ∑

µ ρµ(r), where µ = 1, . . . , p labels the atomic species making up the basis.
This coarse grained density profile ρ(r) will have peaks at the centre of mass of each basis,
falling off to zero over a length scale ξ and having a cross section which is spatially anisotropic.
If we assume that this anisotropic cross section has a fixed shape at a given temperature and
pressure (true when the associated optical branch is much higher than the acoustic branches),
then we may write the effective Hamiltonian as arising from a collection of ‘point particles’
interacting via an anisotropic potential. Once again the notion of a ‘particle’ here is an effective
one, coarse grained over the length scale ξ . The form of the effective Hamiltonian may be
motivated in terms of a density wave picture [27] in much the same way as in section 2. An
anisotropic density interacts via an anisotropic direct correlation function. Within a mean-field
approach this reduces to a pair potential which depends not only on the distance between the two
basis motifs but also on their orientation relative to the crystal axes—orientation fluctuations
within the motifs being neglected.

For specificity, if we assume two atoms per basis, we may then arrive at the following
modification of the two-body potential using the arguments outlined above:

�2(|ri j |) = V2

(
σ

|ri j |
)12

× (1 + α sin2 4(θi j − ψ)), (12)

where the anisotropy parameter α has a fixed value at constant T and P . On the other hand, the
three-body potential may be taken to be the same as in equation (5). Setting γ = 1 +α, we see
that γ is always positive. All angles are measured with respect to the [01] axes of the undistorted
square lattice. The angle ψ represents the orientation of the basis and θi j = sin−1(xi j/|ri j |);
see figure 10. The total energy is a function ofψ , so uniform rotations of the basis with respect
to the crystal axes cost energy (optical mode) while simultaneous rotation of the basis together
with the crystal axes is a symmetry of the Hamiltonian.

Using the modified two-body potential (equation (12)), we compute the energy as a
function of ε as in section 3. For fixed α, the total energy minimized with respect to ψ
and ε leads to ψ = 0 (independent of ε). As before there are three minima in ε, one at ε = 0
(corresponding to a square) and the other two corresponding to rhombi with |ε| being smaller
than the value for the perfect triangular lattice ∼0.28 (figure 10). The jump in the value of the
shear strain ε across the structural transition is therefore smaller than that obtained in section 3.
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φ 
θ ij

i

j

Figure 10. The energy difference �E/N for two values of the anisotropy parameter α = 0 and 1
for V3 = 1 and ρ = 1.1. Note that the energy minima for ε �= 0 shift to lower values of ε as α
increases. Inset: the meanings of the angles θi j and φ used in the text. While θi j is the angle of the
position vector ri j between the molecules i and j measured with respect to the crystal axis {01} in
the reference square lattice, φ is the orientation of the basis molecule measured with respect to the
same axis.

Moreover, we find that this jump in ε goes to zero and the region over which the square phase
is metastable shrinks and disappears as V3 → 0, thus indicating a continuous transition at a
tricritical point. One expects, therefore, that for real systems fluctuation effects near the T–O
transition would be more pronounced. This fact is actually borne out by experiments [4, 5].

The zero- and finite temperature phase diagrams are shown in figure 11. The zero-
temperature phase diagram clearly shows the location of the tricritical point where the jump
in the order parameter vanishes. The effect of finite temperatures is addressed easily within a
cell model approximation. The calculation may be carried out along the lines outlined in the
last section. Once again we see that the Helmholtz free energy can be written as a power series
expansion in ε. The results of the calculation are expected to be accurate at low temperatures if
the anisotropy is not too large. For larger anisotropies the effect of (tri)critical fluctuations may
alter the results for our simple mean-field estimates. Our result shows that the square lattice
now becomes stable over a much larger range of V3 than in the isotropic case. The region of
metastability of the square lattice however decreases and the first-order transition is weakened.

6. Nucleation dynamics: selection of ferrite or twinned microstructure

We have discussed, in great detail, the equilibrium phase diagram of a model solid exhibiting
a square to triangle transition, including a generalization of the model to a nontrivial basis.
Since the primary motivation of our study is to provide a model system for studying the
dynamics of nucleation following a quench from one solid phase to another, we would like
to end this paper with a short discussion on solid state nucleation dynamics and the kinds
of microstructures produced as a result. We shall see that the results obtained are consistent
with the phenomenology of real solids. In addition, we find that microstructure selection is
intimately linked to the nature of the dynamics of individual particles. Reference [3] contains
a detailed account of the nucleation dynamics in this model.
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Figure 11. Left: the zero-temperature phase diagram in the V3–α plane for ρ = 1.1. The dashed
line marks the limit of metastability of the square phase. Note that for V3 = 0, reducing α produces
a second-order transition with a tricritical point at αtc = 2.24. The inset shows the jump in the
order parameter �ε across the square–rhombus phase boundary as a function of the anisotropy α.
Right: the phase diagram in the V3–T plane for α = 1 and ρ = 1.1. The dashed line marks the
limit of metastability of the square phase. Note that in real systems α depends on T so, in general,
any quench traverses a trajectory in the parameter space T –α–V3 and the first-order line may end
in a non-zero-temperature tricritical point.

Consider the MD phase diagram shown in figure 9. Starting from the equilibrium
square phase, we may ‘quench’ into the triangular phase by either changing T or V3 or
both. Experimentally, there are two common protocols—for engineering applications one
uses a ‘continuous cooling curve’ (CCC) [2], where the temperature is reduced at a constant
rate across the transition; however, a more instructive protocol is the ‘quench-and-hold’
one, where the sample is first instantaneously quenched to a given temperature Tf and then
held, so that the sample evolves to its final microstructure at Tf . This procedure is used to
map out the ‘time–temperature transformation’ curves. The quench changes the temperature
dependent interaction parameters controlling the structural transition. In our model, the latter
transformation protocol can be conveniently carried out by changing V3 while holding the
temperature T fixed.

Interaction parameters such as V3 may also be tuned experimentally, by changing external
fields, such as pressure, electric field or light, which couple to the faster electronic degrees of
freedom, thereby affecting the potentials. In the case of colloidal crystals held between glass
plates, the crystal structure may be manipulated by external modulating potentials produced
by crossed laser beams [28].

Note that in order to follow the dynamics over a significant timescale, we work with much
larger system sizes, typically 110 × 110, than in the equilibrium study (section 4.2).

Consider two typical constant temperature transformation protocols—one at high
temperatures and one at low—starting from the equilibrium square and quenching into
the region where the square phase is metastable. Following either transformation
protocol, the product phase is formed by a process of nucleation and growth as can be
seen by following the time dependence of the order parameter 〈�〉 ≡ N−1 ∑

i �i =
N−1 ∑

i (�0)
−1 ∑

jk〈sin2(4θi jk)〉. This order parameter has been constructed to take values
0 (1) in the square (triangular) phases respectively (angular brackets denote ensemble averages)
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Figure 12. The growth of the order parameter� as a function of t/τ ≡ t ×√
V2/σ , showing typical

nucleation and growth following the high temperature (�) and low temperature (�) transformations.
The local order parameter �i has been mapped onto a binary representation such that above 90%,
we set �i = 1; else, 0. The data have been averaged over the 100 initial conditions for the high
temperature and 30 initial conditions for the low temperature quenches. In addition, at each time
we have averaged over a small time window. The curves are a guide to the eye.

and is therefore a convenient measure of the amount of ‘triangleness’ of the region. Figure 12
shows a typical nucleation profile, with an initial ‘wait’ phase followed by a sharp rise.

The nucleation following the high temperature protocol is homogeneous, needing only
thermal fluctuations to destabilize the square phase. On the other hand, the nucleation following
the low temperature protocol is heterogeneous, needing to be promoted by at least a single defect
(vacancy) seeded initially into the system by removing a single particle from our 110 × 110
system, which creates enough strain in the neighbourhood to promote nucleation.

As before, to make contact with continuum physics, we define the coarse grained
dynamical nonlinear elastic strain εi j(r, t) via instantaneous displacements u(r, t) of the
particles from the ideal square lattice.

An MD snapshot following the high temperature protocol shows the growth of an
‘isotropic’ nucleus (figure 13; since this is a snapshot, the nucleus does not appear isotropic;
however, when we average over initial conditions and a time and space window, isotropy
is restored). Following the collective motion of particles, we find that their trajectories are
diffusive and uncorrelated (recall that the microscopic particle dynamics is given by Newton’s
laws). The critical nucleus is untwinned; the particles within the nucleus have local triangular
order as is clear from the values of the local order parameter�i (figure 13). Multiple nucleation
events lead to growing nuclei which eventually coalesce to form a polycrystalline triangular
solid. Subsequently grain boundaries reorient to form a homogeneous triangular phase (ferrite).

In contrast, an MD snapshot following the low temperature protocol (figure 14) shows a
highly anisotropic nucleus (the anisotropy persists on averaging). The collective motion of
particles is non-diffusive and highly correlated, producing a ‘military’ motion characteristic
of martensites. The critical nucleus is found to have a twinned structure. In order to show this,
figure 14 displays the shear strain εxy measured at fixed time. The inset shows the same profile
when integrated over y; the change in sign of εxy marks the position of the twin interface
which sharpens with the march of time. Converting to real units, the size of our system
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Figure 13. A typical MD snapshot following a transformation at high temperature (T = 1.1)
showing an isotropic nucleus consisting of particles with local triangular order (black) in a matrix
of the square lattice (white). The system size is 12 099 particles and the greyscale goes from�i = 0
(white) to �i = 1 (black).

is approximately 100 Å × 100 Å. To see multiple twin domain patterns as seen in optical
micrographs of real martensites, we need to go to system sizes much larger than this.

Before ending this section, we would like to emphasize the following points. Our model
solid shares some of the important equilibrium and dynamical features of ‘real’ solids, while
allowing us to explore a variety of equilibrium and dynamical regimes by simply tuning
parameters of the potential and temperature. As we have seen, the same microscopic dynamics
for the particles (Newton’s laws) gives rise to two distinct dynamical regimes:

(i) At high temperatures, the collective motion of particles is diffusive and the critical nucleus
is untwinned and grows isotropically into the equilibrium triangular phase.

(ii) At low temperatures, the collective motion of particles is non-diffusive and coordinated,
giving rise to a critical nucleus which is twinned and highly anisotropic. The solid is
arrested in a long lived metastable martensite phase.

These dynamical issues have been explored in greater detail in [3]. Note that we have
studied the dynamics of solid state transformations for the isotropic two-body potential (α = 0).
An extension of this study to the case when the two-body potential is anisotropic will appear
elsewhere.

7. Conclusion

In this paper we have described a model system which is designed to undergo a square to
rhombus transition in two dimensions. We believe that our study will be useful in two ways.
On the one hand, it may be used as a simple simulational model for the T–O transition in
real materials which often consists of a large number of individual atomic species, making it
difficult to study using ab initio methods. For this purpose, the parameters V3 and α have to be



7750 M Rao and S Sengupta

Figure 14. Left: a typical MD snapshot following a transformation at low temperature (T = 0.1)
showing a highly anisotropic nucleus consisting of particles with local triangular order (black) in
a matrix of the square lattice (white). The system size is 12099 particles and the greyscale goes
from�i = 0 (white) to�i = 1 (black). Note that the nucleus is twinned. Right: the instantaneous
strain εxy profile at t/τ = 3 clearly showing that the growing nucleus is twinned (as the shades
go from white to black, the local strain εxy goes from negative to positive values with grey being
zero). The inset shows εxy averaged over the vertical direction (the line is a guide to the eye). At
these times the strain values fall sharply from a maximum value of 0.05 to a minimum of −0.05
across a twin interface. At later times the absolute values of the maximum and minimum increase
and the interface sharpens.

‘fitted’ to observed properties of the particular realistic system. The effect of defects such as
vacancies and dislocations on the equilibrium structural transition of the solid is easily studied
within our mesoscopic approach. On the other hand, we could use this system to study, in
general, the dynamical pathways of a simple first-order solid state phase transition involving a
structural transition. It is this context that we would like to emphasize. We have demonstrated
explicitly that our model solid is indeed a good test bed for studying the dynamics of solid state
transformations. We have shown that the nature of the transformation protocol (or quench)
determines the dynamics of nucleation and the eventual microstructure of the solid. What is
the underlying reason for obtaining these different dynamical regimes? These issues and the
interplay between the mobility of defects and the dynamics of the order parameter deserve
a serious and detailed analysis [3] far exceeding the scope of this paper. In future, we hope
to use this model system to obtain microscopically detailed information about the statics and
dynamics of solid–solid interfaces.
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Appendix

In general, evaluation of three-body energies requires sums over all possible triplets which
for a system of reasonable size is prohibitively expensive. The particular form for the three-
body potential used by us is, however, special and can be evaluated without keeping track
of triplets. We illustrate below how this may be done for our system [12, 29] and derive an
explicit expression for the energy.

The three-body part of the energy (see equation (1)) is given by

E3 = 1
6

∑
i �= j �=k

�3(ri j, r jk, rki )

= 1

2

∑
i �= j �=k

V3

4
fi j sin2(4θi) fik

=
∑

i �= j �=k

2(sin2 θi cos2 θi − 4 sin4 θi cos4 θi) fi j fik . (13)

Now define x̃i j = xi j/ri j and ỹi j = yi j/ri j , so that sin θi = x̃ik ỹi j − x̃i j ỹik and
cos θi = x̃ik ỹi j + x̃i j ỹik . Using the above definitions and the quantities

gi j(1) = x̃2
i j ỹ2

i j fi j ,

gi j(2) = x̃2
i j ỹ2

i j(x̃
2
i j − ỹ2

i j) fi j ,

gi j(3) = x̃4
i j ỹ4

i j fi j ,

gi j(4) = x̃2
i j ỹ2

i j(x̃
2
i j − ỹ2

i j)
2 fi j ,

gi j(5) = x̃3
i j ỹ3

i j(x̃
2
i j − ỹ2

i j) fi j ,

(14)

we get E3 = V3
∑

i Si with

Si = 4[Gi(1)Fi − 4Gi(1)2 − Gi(2)2] − 16

× {Gi(3)Fi + 32Gi(3)
2 + 2Gi (4)

2 + Gi (1)
2

− 16Gi(3)Gi(1)− 4Gi (5)Gi(2) + 16Gi(5)2} (15)

and Gi (n) = ∑
j �=i gi j(n) and Fi = ∑

j �=i fi j . The three-body forces can be obtained by
taking derivatives of E3 which can be cast into a similar form.
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